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An approximate method for Centroid Molecular Dynamics (CMD) is presented which uses a Gaussian
approximation. The resulting method, called Gaussian CMD (GCMD), is 100-1000 times faster than CMD
because it replaces explicit path-integral sampling, which is the most time-consuming part of CMD, with a
Gaussian averaging, which can be done analytically. Several methods for computing the Gaussian width
parameter in the GCMD approach are also presented. This new method is shown to give satisfactory results
for the position correlation function in simple one-dimensional systems when CMD itself is consistent with
the exact result. The GCMD and CMD results are also compared for the case of 1-dimensional systems
coupled to harmonic baths, with good success. GCMD is further compared to CMD with good success for
liquid para-hydrogen at two different temperatures, 14 K and 25 K, and for ortho-deuterium at 20.7 K.

I. Introduction

Centroid Molecular Dynamics (CMD) has provided an
accurate approximate method to calculate quantum time cor-
relation functions for systems at thermal equilibrium such as
those commonly found in the condensed phase. The method
was originally proposed by Cao and Voth1-5 and then rigorously
formulated using the quasi-density operator (QDO) concept by
Jang and Voth.6,7 While exact centroid dynamics can also be
formulated using the QDO concept,6 the CMD method itself is
not exact because it assumes that the time-dependent QDO,
δ̂c(t;xc,pc), is propagated by virtue of the following approxima-
tion7

wherexc andpc are the position and momentum path centroid
variables, respectively. As a result, the approximate time-
dependent QDO in CMD retains its initial form and therefore
never has negative regions as does the exact time-dependent
QDO in some nonlinear systems. Although it is possible to
propagate the QDO in an exact manner, for example, by
Numerical Matrix Multiplication (NMM),8 this becomes es-
sentially impossible as the system goes beyond a few dimensions
because the computational effort scales exponentially.

The CMD approximation, on the other hand, has proven to
be a powerful approach for obtaining certain quantum dynamical
properties of condensed phase systems. Examples of this include
proton solvation and transport,9,10 liquid para-hydrogen,11-17

liquid nonsuperfluid He,4,18 Vibrational Energy Relaxation
(VER) rate constants,19-22 vibrational spectroscopy,23,24 and
quantum activated rate constants.25-27 CMD, of course, has its
limitations. The method is intrinsically an approximation most
well-suited for condensed phase systems. Such systems usually
exhibit fairly rapid regression to equilibrium when evolving from
an initially perturbed state and are therefore characterized by

fairly strong dissipation. However, an important property of
CMD is that the system decays to the correct equilibrium states
a property not shared by many approximate methods.

Sometimes CMD calculations are demanding if the system
is too large or when it is coupled to another expensive calcu-
lation, for example, an ab initio calculation.28 CMD calculations
in general take longer than classical MD calculations by a factor
related to the number of path integral discretizations times the
required sampling to calculate the centroid force. In many cases,
this can amount to simulations 100-1000 times more expensive
than classical MD. It is therefore desirable to have a more
efficient approach for CMD simulations, and the present work
is devoted to this goal. In particular, we introduce a new CMD
algorithm that uses a Gaussian representation of the QDO. A
different approach for efficient CMD is to use force-match to
predetermine an effective pairwise centroid force between
particles.29

The present paper includes a formal derivation of several
approximations in section II and then compares these methods
for typical model systems in section III. Section IV contains
concluding remarks.

II. Theory

A. Exact Initial QDO and the CMD Approximation. The
diagonal element of the exact initial QDO, eq 17 of ref 6, is
given by
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δ̂c(t;xc,pc) ≈ δ̂c(xc(t),pc(t)) (1)
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where the position centroid distribution is given by

and the centroid variable in discretized path integral notation is
written asx0 ) (x1 + x2 + ‚‚‚ + xP)/P. A one-dimensional no-
tation is used throughout this paper, which is readily generalized
to an arbitrary number of particles in three dimensions.

The exact time-dependent QDO is defined as

which is approximated by

in the CMD formalism and thus leads to the practical imple-
mentation of centroid dynamics. As stated earlier, an important
goal is to find more efficient methods for CMD simulations in
realistic condensed phase systems. Equation 5 defines time-
dependent CMD variables and their time correlation functions
(TCFs) as, respectively

with the CMD equations of motion forxc(t) andpc(t) given by

B. Gaussian Approximation. The QDO at higher temper-
ature can be shown to assume a Gaussian form.6 It is therefore
natural to develop a Gaussian approximation which, in turn,
makes the CMD algorithm much more efficient. As the QDO
is normalized to unity, the Gaussian QDO (GQDO) at each
centroid position is defined by a single parameter, its width.
To determine the best expression for the width of the GQDO,
one looks to the exact expression for the QDO in the limit of
a harmonic potential. If a potential is harmonic, i.e., given by

its QDO element is given by

where

If the potential is not harmonic, eq 11 can still be approximately
applied for a general potential. Below two different approxima-
tions will be given for the approximate widths of the Gaussian
QDO.

C. Choices for the Gaussian Width.1. Free Particle Width:
GCMD-0. The expression for the QDO in a free particle
potential (GQDO-0) is obtained in the limiting case of eq 11 as
Ω f 0, i.e.

whereγG(â) ≡ 6m/(p2â). This GQDO-0 expression gives some
degree of quantum behavior for the system. AsγG(â) f ∞ at
a very high temperature (or with a very heavy particle), the
GQDO becomes a delta function centered at the centroid
position, so the particle thus behaves in a classical manner.

2. Local Harmonic Approximation: GCMD-I.In the limit of
low temperature, the exact QDO becomes more position-
dependent, especially if the potential is anharmonic. The free-
particle (or a fixed width) approximation of the GQDO (GQDO-
0) therefore seems less realistic, and a more accurate approxi-
mation for the GQDO is required. Again, there is obviously no
analytical expression for the exact QDO, so a centroid-position-
dependence of the GQDO can be inferred from a case in which
an analytic expression for the QDO is known. One such case is
the harmonic potential.

Because an analytical expression for the QDO is available
in the form of eq 11, one can introduce a local harmonic
approximation for a general potential,V(x). In the local harmonic
approximation, a general potential in the neighborhood (x)
around each centroid point,xc, is approximated as a Taylor
expansion up to a quadratic term by

whereΩG(xc), which replacesΩ of eq 11 in the local harmonic
approximation, is defined as

As a result, the GQDO becomes

where

The value ofΩG(xc) above becomes an imaginary number
when the local curvature of potential is negative, which can
limit the application of the Gaussian approximation for the QDO.
This problem can be avoided, however, by using the QDO of

〈x′|δ̂G(xc,pc)|x〉 )

xγG(â)

π
exp[-γG(â)(x′ + x

2
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+ i
p
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the free particle in the region that the curvature of potential
goes negative, i.e.

because

D. Gaussian Centroid Force.Once a GQDO is given, the
Gaussian centroid force,FG, is required to propagate the centroid
variables. This force is given by

For any force which is expanded in a polynomial form

the Gaussian centroid force has the following form

whereΓ is the gamma function and(nk) is n!/(k!(n - k)!) for
evenn - k or zero for oddn - k.

Other forces, which cannot be expanded in polynomial forms,
are still expandable in Gaussian functions, i.e.

and their corresponding Gaussian centroid forces are given by

The Gaussian centroid force in many-particle systems can be
defined in a similar way, but this involves additional assump-
tions. This approach is discussed in the Appendix.

E. Propagation of Centroid Variables and Quantum Time
Correlation Functions. Once initial centroid points, (xc,pc) are
sampled according to the centroid distribution function, eq 24,
where the sampling ofpc is a just Gaussian sampling

those centroid variables are propagated by eqs 25 and 26 under
the Gaussian centroid force of section II.D such that

which gives the time-dependent centroid variables,xc(t) and
pc(t). The time-dependent velocity centroid variable,Vc(t) then
gives the centroid velocity correlation function,CVV

cen(t), as

whereZ ≡ ∫∫dxcdpc/(2πp)Fc(xc,pc) andNc is number of sampled
centroid points. Equation 28 is a practical form to get eq 27,
and averaging overtmax gives more rapid convergence.

The centroid velocity correlation function,CVV
cen(t) is used in

the following Fourier transform relationship3

to give an approximation to the quantum velocity correlation
function, CVV

qm(t), which is one of the main goals in this
calculation and whose formal expression is given by

The tilde in eq 29 denotes the Fourier transform, and eqs 28
and 29 are working equations for the calculation ofCVV

qm(t). In
the same way, position autocorrelation functions can be obtained
by replacingV with x in eq 27 through eq 30.

III. Examples

A. One-Dimensional Potentials.The models studied here
are the same ones that have been studied with CMD and exact
methods before.7 The weak anharmonic potential, eq 31 below,
represents many cases where anharmonicity of a system is not
large, while the double well potential, eq 32, is a case where
the quantum effects such as tunneling become important. The
quartic potential, eq 33, is for the test of a large anharmonicity
(i.e., there is no quadratic part to this potential). These three
potentials are given by

1. Centroid Distribution.At the initial step of the simulation,
the centroid variablesxc,pc are sampled according to the centroid
distribution function, eq 24. Sampling ofpc follows simply a
Gaussian distribution, whilexc is sampled by Path Integral
Molecular Dynamics (PIMD) with a discretization ofP ) 10
according to eq 3. Also Nose´-Hoover chain dynamics30 and the
VV-3 algorithm developed by Jang and Voth31 (length of chain
) 4 and Nose´ masses) 2) were used for sampling ofxc. The
initial PIMD ring-polymer was relaxed 1,000,000 steps with a
time step of 0.01, and then the centroid positions of every 10,000
steps were collected until the total number ofxc initial conditions
reached 10,000.

2. Quantum Position Correlation Function.Once the time-
dependent position centroid variable is obtained, it gives the
centroid position correlation function,Cxx

cen(t), through eqs 27-

γG(xc;â) ≡ mΩG(xc)

pRG(xc;â)
for V′′(xc) > 0 (18)

≡ 6m
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γG
(n-k+1)/2

xc
k,

k ) 0,1,2,...,n (21)

f(x) ) -
∂V(x)

∂x
) ∑

n

[an + bne
-cn(x-xn)2

] (22)

FG(xc) ) ∑
n

[an + bnx γG

γG + cn

e-γGcn(xc-xn)2] (23)

Fc(rc,pc) ) e-âpc
2/2mFc(rc) (24)

dxc(t)

dt
)

pc(t)

m
(25)

dpc(t)

dt
) FG(t) (26)

CVV
cen(t) ) 1

Z∫∫dxcdpc

2πp
Fc(xc,pc)VcVc(t) (27)

)
1

Nc
∑
i)1

Nc 1

tmax
∑
t0)0

tmax-1

Vc,i(t0)Vc,i(t0 + t) (28)

C̃VV
qm(ω) ) pâω

2 [coth(pâω
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30 but now withx in the place ofV. In Figures 1-3, different
position correlation functions are compared: exact, CMD,
GCMD-0, GCMD-I, and Classical Centroid Dynamics (CCD),
for each of the three potentials in eqs 31-33. The CCD method
is one in which the centroids are propagated with the classical
force, but their initial conditions are sampled from the exact
quantum centroid distribution. Exact and CMD data are taken
from the paper by Jang and Voth.7

Weak Anharmonic Potential [Eq 31]. When the temperature
is such thatâ ) 1, all GCMD, CCD, and CMD results give a
good approximation for position correlation functions to the
exact one in Figure 1. Whenâ ) 8, all approximate methods
deviate from the exact one, although most of the features of
the exact result are still captured. CCD and GCMD-0 are
somewhat less accurate than GCMD-I or CMD, because the
former are not capable of describing the position-dependence
of the QDO, which becomes more important as the temperature
is lowered.

Double Well Potential [Eq 32]. The double well potential is
far from the harmonic case, even forâ ) 1, so the results of
any approximate method in Figure 2 deviate significantly from
the exact correlation function. This behavior arises because the
approximate time-dependent position centroid variable,xc(t),
does not follow the exact centroid trajectory aftert ∼ 3 in Figure
3 of ref 32. The CMD assumption in section II.A does not reflect
the real behavior of the time-dependent QDO. In reality, the
QDO as a function of time can be different even at the same
centroid position and momentum, i.e.

which is assumed to be an equality in the CMD formalism. This
real behavior of the QDO is shown in Figure 1 in the paper by
Jang and Voth6 and the semiclassical centroid dynamics work
of Ka and Voth.32

In Figure 2 for â ) 1, all GCMD and CMD results are
satisfactory up tot ∼ 3, while the CCD approach shows a larger
and earlier deviation from the exact result. When compared to
CMD, both GCMD results give a reasonable agreement over
the whole range of time. When the temperature is lowered to
â ) 8, the GCMD results are in worse agreement with the CMD
correlation function and the exact result in comparison to the
â ) 1 case. The CCD result deviates seriously, and the GCMD-0

result deviates at early times. The GCMD-I result is better than
both CCD and GCMD-0 because it includes a position-sensitive
QDO description.

Quartic Potential [Eq 33]. Whenâ ) 1 in Figure 3 for the
purely quartic potential, all approximate CMD methods give
reasonable correlation functions. The GCMD correlation func-
tions follow the CMD correlation function very well up tot ∼
5. When the temperature is lowered toâ ) 8, however, only
the CMD correlation function exhibits good agreement with the
exact correlation function in Figure 3. All other approximate
methods fail to follow the exact or CMD correlation beyond
t ) 1, although the GCMD approximations generally have just
a phase shift from the CMD results. The CCD result is the worst
case in that its dephasing is prominent in comparison to any
other method.

Overall these typical 1-dimensional potential examples con-
firm that CMD works better when anharmonicity is weak or
the temperature is high or low but not intermediate. Also they
reveal that GCMD is an efficient and satisfactory approximation
to CMD in the time range where CMD is consistent with the
exact correlation function except for the purely quartic potential

Figure 1. Position time correlation functions for the weak anharmonic
of eq 31, at two different temperatures of (A)â ) 1 and (B)â ) 8:
exact (thick solid), CMD (dotted), GCMD-0 (open circle), GCMD-I
(thin solid), and CCD (dashed).

δ̂c(t;xc,pc) * δ̂c(t′;xc,pc) for t * t′ (34)

Figure 2. Position time correlation functions for the double well of
eq 32, at two different temperatures of (A)â ) 1 and (B)â ) 8: exact
(thick solid), CMD (dotted), GCMD-0 (open circle), GCMD-I (thin
solid), and CCD (dashed).

Figure 3. Position time correlation functions for the quartic of eq 33,
at two different temperatures of (A)â ) 1 and (B)â ) 8: exact (thick
solid), CMD (dotted), GCMD-0 (open circle), GCMD-I (thin solid),
and CCD (dashed).
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at a temperature ofâ ) 8. One further expects that (G)CMD
will be better in larger systems where dissipation plays an
important role. So (G)CMD is tested in the next section for the
above systems coupled to a dissipative harmonic bath. GCMD
is also applied to many-particle systems in section III.C.
Unfortunately, exact calculations for these cases are not available
for comparison, so the focus is only on how GCMD works in
comparison to CMD.

B. 1D System+ Harmonic Baths. Sun and Miller33 have
added 10 harmonic (bath) degrees of freedom to a 1-D system
potential in order to investigate the system-bath problem. The
same coupling between system and bath modes is used in this
work. Specific values of frequencies,{ωi}, and coupling
constants,{ci}, are listed in Table 1. Two different sets of
coupling constants were employed in order to explore how
quantum dissipation affects the (G)CMD correlation func-
tions: weak coupling,{0.063, ..., 0.087} and strong coupling,
{0.21, ..., 0.29}.

1. Single Well Potential with Weak Anharmonicity+ Gauss-
ian Bath.In this case the potential is given by

When the coupling is weak (Figure 4A,B), the correlation
function of system has almost the same frequency, but the
oscillation is somewhat damped in comparison to the case of
no coupling. As the coupling becomes strong (Figure 4C,D),
the correlation function of the system is modified significantly.
Both the frequency and amplitude are changed, and dephasing
becomes much more dominant. In both cases, all CMD
approximations are in good agreement with one another.

2. Double Well Potential+ Gaussian Bath.The potential in
this case is given by

It is shown from comparison of Figures 2 and 5 that the
(G)CMD correlation function has more structure when the
system is coupled to a bath. Figure 5A,C shows that regardless
of the strength of the coupling, ifâ ) 1 all approximations
give a reasonable result. Whenâ ) 8 and the coupling is weak,
CCD gives poor agreement with the CMD result, while GCMD
captures more of the CMD behavior, with GCMD-I being the
best.

3. Quartic Potential+ Gaussian Bath.The potential in this
case is given by

From a comparison of Figures 3 and 6, whenâ ) 1 the
correlation functions from (G)CMD show more structure at later
times if bath modes are coupled to the system dynamics. It
appears that somehow the coupling to the bath may serve to
reduce the anomalous dephasing of the CMD result atâ ) 1
for this potential as seen in Figure 3. Both GCMD approxima-
tions seem to follow the CMD correlation function reasonably
well, while CCD remains a poor approximation at the low
temperature (â ) 8).

TABLE 1: Frequencies and Coupling Constants for the
Harmonic Bath in Section III.B a

ci/mi

ωi weak coupling strong coupling

0.57(0.4) 0.063 0.21
1.13(0.8) 0.102 0.34
1.7(1.2) 0.123 0.41
2.26(1.6) 0.132 0.44
3.11(2.2) 0.132 0.44
3.68(2.6) 0.129 0.43
4.24(3.0) 0.120 0.40
5.09(3.6) 0.108 0.36
5.66(4.0) 0.099 0.33
6.22(4.4) 0.087 0.29

a Frequencies in parentheses were used for weak anharmonic or
quartic potential cases. All units are in atomic units.

V(x,{qi}) )
1

2
x2 +

1

10
x3 +

1

100
x4 + ∑

i)1

10 miωi
2

2 (qi -
ci

miωi
2
x)2

(35)

V(x,{qi}) ) -
1

2
x2 +

1

10
x4 + ∑

i)1

10 miωi
2

2 (qi -
ci

miωi
2
x)2

(36)

Figure 4. Position time correlation functions for the weak anharmonic
potential weakly (A and B) or strongly (C and D) coupled to 10
harmonic bath modes at two different temperatures ofâ ) 1 (A and
C) and â ) 8 (B and D): CMD (dotted), GCMD-0 (open circle),
GCMD-I (thin solid), and CCD (dashed).

Figure 5. Position time correlation functions for the double well
potential weakly (A and B) or strongly (C and D) coupled to 10
harmonic bath modes at two different temperatures ofâ ) 1 (A and
C) and â ) 8 (B and D): CMD (dotted), GCMD-0 (open circle),
GCMD-I (thin solid), and CCD (dashed).

V(x,{qi}) )
1

4
x4 + ∑

i)1

10 miωi
2

2 (qi -
ci

miωi
2
x)2

(37)
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C. Many-Particle Systems. 1. Gaussian Fitting of the
SilVera-Goldman Potential for Para-H2. Hydrogen molecules
can be approximated to be in their rotational ground state. This
approximation is justified at temperatures below 85 K, the
rotational temperature of hydrogen molecule.11 The interaction
between such spherical hydrogen “molecules” is described by
the Silvera-Goldman potential,34 given by

where

The parameters of eqs 38 and 39 are found in Table 2. In
Appendix A, fitting of the Silvera-Goldman forces by Gaussian
functions is presented, which were used in our GCMD simula-
tions.

2. GCMD Simulations.The equilibrium state of liquid para-
hydrogen at 25 K (or 14 K) was achieved through relaxation of
an initial fcc structure where 500 molecules were packed
periodically within an equilateral cubic simulation box. After
an initial 10 ps relaxation, 300 4.2 ps runs were carried out
with a time step ofdt ) 1 fs, each starting from the final
configuration of the last run. Whenever the next run started,
velocities of the particles were resampled according to eq 24 to
ensure canonical sampling. Data were collected from the final
100 runs, and no data were collected for the first 200 fs of each
run. For sampling of para-hydrogen atT ) 25 K and ortho-

deuterium atT ) 20.7 K, the second set of 100 4.2 ps runs
were enough, but para-hydrogen atT ) 14 K required longer
equilibration runs. This is because relaxation from initial lattice
structure occurs more slowly at a lower temperature.

3. Velocity Correlation Function and Self-Diffusion Con-
stants.Velocity autocorrelation functions,CVV(t) ) 〈vc(0)vc(t)〉Fc,
were calculated from simulation runs for 3 cases and appear in
Figure 7 (A-C). In all three figures, there are some relatively
small differences between exact CMD and GCMD (-0, or-I).
Of the three systems, para-hydrogen atT ) 14 K is most
quantum in nature, and therefore one can see larger differences
between GCMD-0 and GCMD-I from Figure 7A. Differences
between methods become smaller as the temperature goes higher
(Figure 7B) or the mass gets heavier (Figure 7C).

The self-diffusion constants,D, were calculated through the
Green-Kubo formula5,11 where a numerical integration is
performed over Figure 7(A-C) such that

The values for the diffusion constants are listed in Tables 3-5
for the three systems studied. Para-hydrogen atT ) 25 K (Table
3) is well described by both forms of GCMD, while atT ) 14
K (Table 4), the two GCMD approximations give different
diffusion constants. Of these choices, GCMD-I seems most
reasonable as might be expected since it employs a more
physically accurate local quadratic width than the free particle

Figure 6. Position time correlation functions for the quartic potential
weakly (A and B) or strongly (C and D) coupled to 10 harmonic bath
modes at two different temperatures ofâ ) 1 (A and C) andâ ) 8 (B
and D): CMD (dotted), GCMD-0 (open circle), GCMD-I (thin solid),
and CCD (dashed).

TABLE 2: Parameters for the Silvera-Goldman Potential
Function for Ground State H2-H2

a

potential a b c rm C6 C8 C9 C10

VH2-H2 1.713 1.5671 0.00993 6.50 12.14 215.2 143.1 4813.9

a The units for each quantity are atomic units. Taken from Table 1
of ref 36.

VSG(r) ) exp[a - br - cr2] - [C6

r6
+

C8

r8
-

C9

r9
+

C10

r10]fc(r)
(38)

fc(r) ) {exp[-(1.28(rm/r) - 1)2], r < 1.28rm

1, r g 1.28rm
(39)

Figure 7. Velocity correlation functions of (A) para-hydrogen atT )
14 K, (B) para-hydrogen atT ) 25 K, and (C) ortho-deuterium atT )
20.7 K. The three curves are CMD (thick solid line), GCMD-0 (dotted
line), and GCMD-I (dashed line).

TABLE 3: Self-Diffusion Constants for Liquid
Para-Hydrogen at 25 K (Å2/ps)

method Green-Kubo density (Å-3)

CMD (ref 17) 1.52( 0.08 0.0190
GCMD-0 1.46( 0.05 0.0190
GCMD-I 1.54( 0.07 0.0190
experiment (ref 37) 1.6

TABLE 4: Self-Diffusion Constants for Liquid
Para-Hydrogen at 14 K (Å2/ps)

method Green-Kubo density (Å-3)

CMD (ref 17) 0.35( 0.05 0.0235
GCMD-0 0.22( 0.05 0.0230
GCMD-I 0.32( 0.06 0.0230
experiment (ref 37) 0.4 0.0230

D ) 1
3∫0

∞
dt〈vc(0)vc(t)〉Fc

(40)
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width of GCMD-0. This result also implies that a position
sensitivity of the QDO at a lower temperature is more important.

For o-deuterium atT ) 20.7 K (Table 5), there is a less
difference between the GCMD results, which may be ascribed
to a relatively heavy mass of deuterium in comparison to that
of hydrogen, making it more classical. Overall GCMD-I gives
very satisfactory diffusion constants for all three cases, which
is an encouraging result from this work.

IV. Concluding Remarks

In this paper, a Gaussian-approximation for CMD (GCMD)
has been introduced in order to greatly increase the speed and
efficiency of CMD calculations. GCMD is clearly a good choice
when CMD is expected to give a result consistent with the exact
one, for example, condensed phase systems when dissipation
from one degree of freedom of interest to other degrees of
freedom is prominent. GCMD is very efficient in terms of
computational effort, e.g., it requires∼1/100th the CPU time
compared to full CMD, and is only 2-3 times slower than
conventional classical MD. This increase in speed is possible
because GCMD replaces the most time-consuming part of CMD,
i.e., the calculation of the average centroid force, with an
analytical integration. This increase in efficiency due to the
analytical Gaussian averaging is in many ways similar to the
use of Gaussian basis sets in electronic structure calculations.
If the size of the system is large, or when it is coupled to another
expensive calculation such as an ab initio (AI) calculation,11

GCMD may be a good choice or at least a good starting point
for a more expensive full CMD calculation. As a realistic
example, GCMD was applied in the present work to liquid para-
hydrogen/ortho-deuterium where full CMD results were avail-
able for comparison. This example reveals that GCMD can be
a quite good approximate method for systems at low temperature
where quantum effects play a significant role. The computational
efficiency of GCMD when utilized in AIMD remains to be
determined because the analytical force and its derivative do
not exist in AIMD and must be also computed numerically.
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Appendices

A. Fitting the Silvera-Goldman Force to Gaussian Func-
tions. When GCMD is adopted for liquid para-hydrogen, the
Silvera-Goldman potential of eq 38 or its derivative (force)
leads to a singularity problem in the Gaussian integration over
[-∞,∞]. Approximating it with several Gaussians can circum-

vent this singularity problem. The Silvera-Goldman force is
given from eq 38 by

where

This force can be written as with the superposition ofNG

Gaussians as follows.

A different range of the fitting potential will require a different
number of Gaussians. This fitting range should be large enough
to cover any significant distributions which are shown in Figure
1S of the Supporting Information. Since the tail of GQDO-0
along theV-direction at 14 K is found in the most inner bound
region, this should be taken into account in the determination
of the inner bound of the fitting range. As such, an appropriate
inner bound of the fitted force should be around 2.1 Å. Figure
8 shows the 9G-fitting (Supporting Information) has the best
fit around the minimum force, while Figure 8B suggests 10G-
fitting is better for the long-range behavior. Since the average
contact range and the long-range are more important in this

TABLE 5: Self-Diffusion Constants for Liquid
Ortho-Deuterium at 20.7 K (Å2/ps)

method Green-Kubo density (Å-3)

CMD (ref 17) 0.40( 0.06 0.0254
GCMD-0 0.38( 0.06 0.0254
GCMD-I 0.41( 0.06 0.0254
experiment (ref 38) 0.36 0.0254

Figure 8. Silvera-Goldman force is fitted to Gaussian function sets.
3-, 6-, 9-, or 10-Gaussians fitted forces are compared. For short-range
fitting (A) 9G seems best, whereas a 10G-fitted force describes the
best of long-range fitting (B). In the simulations, it is believed that
both the equilibrium distance and the long-range part are more important
than any other range, so the 10G-fitted force was chosen for this work.

FSG(r) ) - d
dr

VSG(r) ) (b + 2cr) exp[a - br - cr2] -

[6C6

r7
+

8C8

r9
-

9C9

r10
+

10C10

r11 ]fc(r) -

[C6

r6
+

C8

r8
-

C9

r9
+

C10

r10]f′c(r) (A1)

f′c(r) ) {(2.56rm/r2)((1.28rm/r) - 1)fc(r), r < 1.28rm

0, r g 1.28rm
(A2)

FSG(r) ≈ ∑
n)1

NG

[Ane
-2(r-rn)2/wn

2
+ Bn] (A3)
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simulation, the 10G-fitting within the range [2.1 Å, 52.9 Å]
was chosen for this work. This range [2.1 Å, 52.9 Å] guarantees
inclusion of most parts of the GQDO over the whole distribution,
so that the Gaussian centroid force integrated within this range
will have a small error. Also this range sufficiently covers the
size of the simulation box (27.9 Å) or the region of the minimum
image convention. The parameters for the fitted force with 10
Gaussians is given in the Supporting Information.

B. Gaussian Centroid Force.Once any type of GCMD in
section II.C is employed, the Gaussian centroid force of the
Silvera-Goldman force has the following form

and the value ofγG depends on the type of GCMD from section
II.C.

If a system consists ofNH2 hydrogen molecules, each pair of
hydrogen molecules experiences this Gaussian centroid force,
and there are a total ofNH2(NH2 - 1)/2 calculations of the
Gaussian centroid force required for each propagation of the
whole system. Appendix C describes the Gaussian centroid force
in a many-particle system. With that in mind, each hydrogen
molecule propagates under the force that is the vector sum of
NH2 - 1 Gaussian centroid forces from other hydrogen
molecules. For a better notation for pairwise interacting systems,
the centroid position,rc in eq B2, is replaced by the distance
between theith hydrogen and thejth hydrogen molecules,rij.
Therefore, the total Gaussian centroid force exerted on theith
hydrogen is expressed as

wherer i is a position of theith hydrogen andr̂ ij is a unit vector
pointing from thejth hydrogen to theith hydrogen, i.e.r̂ ij )
(r i - r j)/rij. It should be noted that cross-correlations have been
neglected in defining the GCMD width and Gaussian-averaged
centroid force in the above equation (see below).

C. Gaussian Centroid Force in Many-Particle System.1.
Pairwise AdditiVity Assumption of the Gaussian Centroid Force.
For an N-body system, the Gaussian centroid force on theith
particle is, in principle, defined as

wherer i,G and rim are the Gaussian centroid position and the
m-direction coordinate (normallyx, y, or z) of the ith particle.
The γim,G in eq C1 is defined in the same way as in eqs 13 or
16 except that this requires a calculation of the quantity,∂2Vi(r i)/
∂rim

2 for Vi(r i) ) ∑j)1
N-1 Vij(rij) where Vij is a pair potential

between particlei and particlej. Doing this in many-particle

systems is actually very cumbersome so a more practical
approach is chosen below. It is helpful, however, to explore
aspects of the above approach before delving into the details.
For example, each particle in a many-body system is located
either at the boundary or inside a cluster as shown in Figure 9.
Figure 9 shows spatial arrangements of hydrogen molecules
which are used in the calculations of distribution functions in
Figure 1S. The potentials exerted on the inside particles along
each direction have functional forms as given in the Supporting
Information. Note that these potentials and forces are expressed
along a single direction (f, e, or V) rather than in 3-dimensional
coordinates. Classical distribution functions (P ) 1), which are
just Boltzman distributions, exp[-âV(r)], are also shown in the
same Figure 1S of the Supporting Information for comparison.
Centroid distributions come from PIMD using an isomorphic
ring polymer.35 A quantum particle described by a ring polymer
of P ) 10 beads distributes over a little narrower range in
comparison to a classical particle. Of course any particle will
be inside a cluster if one uses periodic boundary conditions in
simulations. From Figure 1S, one can see that both the
distribution and QDO are not much different along any direction
(f, e, or V) once a particle is surrounded by other particles, so
one can also determine a proper inner bound for the fitted force.

A more practical approach is to calculate a direct Gaussian
centroid force for each pair interaction and then do the vector
sum for each particle, such that

This is the “pairwise additivity assumption” of GCMD. In the
viewpoint of classical dynamics, it is natural to think of the
total force on a particle as the same as a vector sum of forces
from all pairs. It is, however, an additional assumption in the
GCMD formalism to consider a vector sum of Gaussian forces
of the pair interactions, eq C2, instead of eq C1. This assumption
not only makes the method more practical but also results in a
quite good description which is confirmed in section III.

FG(rc) ) Tr[δ̂GF̂] ) ∫drFSG(r)‚xγG

π
e-γG(r-rc)2

(B1)

FG(rc) ) ∑
n)1

NG

[Anxgne
-2gn(rc-rn)2/wn

2
+ Bn] (B2)

gn ≡ γG

γG + 2/wn
2

(B3)

FG(r i) ) ∑
j)1

NH2-1

r̂ ij∑
n [Anx γG

γG + 2/wn
2
e-2γG(rij-rn)2/wn

2
+ Bn]

(B4)

Fi,G(r i,G) ) ∑
m)1

3

r̂ im[∫drim(-
∂Vi(r i)

∂rim
)xγim,G

π
e-γim,G(rim-rim,G)2]

(C1)

Figure 9. Hydrogen molecules in a body-centered cubic. Thick arrows
show directions along which distributions are calculated in Figure 1S
of the Supporting Information.

Fi,G(r i,G) ) ∑
j)1

N-1

r̂ ij[∫drij(-
∂Vij(rij)

∂rij
)xγij ,G

π
e-γij,G(rij-rij,G)2]

(C2)
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2. Gaussian Centroid Force for Each Pair-Interaction.Once
the pairwise additivity assumption described in the previous
section is accepted, another issue still remains because a pair-
interaction generally has a singular point at zero distance and
its Gaussian average, eq C3, becomes divergent, i.e.

There are two possible ways to circumvent this problem. One
is using a tapered force at the singular point, cutting the Gaussian
tail at the proper range, and then integrating eq C3 numerically.
The other one is fitting the pair-interaction within the relevant
range into a superposition of several Gaussian functions.

As stated in the main text, the second method is usually
superior in computational efficiency to the first method mainly
by virtue of the analytic integration in eq C3 for a Gaussian-
fitted force. In the case that fitting the pair-interaction into a
superposition of Gaussians is difficult, the first method could
be a more effective choice. The current work on para-hydrogen/
ortho-deuterium uses the second method to get a Gaussian
centroid force for the pair-interaction, the details of which are
given in Appendices A and B.

Supporting Information Available: Gaussian functions set
used in fitting Silvera-Goldman force, the potential exerted
on an inside particle of a cluster, and its corresponding
distribution functions and QDOs. This material is available free
of charge via the Internet at http://pubs.acs.org.
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