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An approximate method for Centroid Molecular Dynamics (CMD) is presented which uses a Gaussian
approximation. The resulting method, called Gaussian CMD (GCMD), is-1000 times faster than CMD
because it replaces explicit path-integral sampling, which is the most time-consuming part of CMD, with a
Gaussian averaging, which can be done analytically. Several methods for computing the Gaussian width
parameter in the GCMD approach are also presented. This new method is shown to give satisfactory results
for the position correlation function in simple one-dimensional systems when CMD itself is consistent with
the exact result. The GCMD and CMD results are also compared for the case of 1-dimensional systems
coupled to harmonic baths, with good success. GCMD is further compared to CMD with good success for
liquid para-hydrogen at two different temperatures, 14 K and 25 K, and for ortho-deuterium at 20.7 K.

I. Introduction fairly strong dissipation. However, an important property of
Centroid Molecular Dynamics (CMD) has provided an CMD is that the system decays to the correct equilibrium-state

accurate approximate method to calculate quantum time cor-2 propert_y not shared by mgny approximate methods.
relation functions for systems at thermal equilibrium such as  Sometimes CMD calculations are demanding if the system
those commonly found in the condensed phase. The method!S 00 large or when it is coupled to another expensive calcu-
was originally proposed by Cao and Véthand then rigorously lation, for example, an ab initio cglculané?lCMD calculations
formulated using the quasi-density operator (QDO) concept by In general take longer than classical MD calculations by a factor
Jang and Votfi” While exact centroid dynamics can also be elated to the number of path integral discretizations times the
formulated using the QDO concepthe CMD method itself is required sampling to calculate the centroid force. In many cases,
not exact because it assumes that the time-dependent QDOFhIS can amount to simulations 160000 times more expensive

de(t:xepo), is propagated by virtue of the following approxima- tha_m' classical MD. 1t is ther_efore _desirable to have a more
tion” efficient approach for CMD simulations, and the present work

is devoted to this goal. In particular, we introduce a new CMD
Stx,p.) & S, (x(t),p.(t)) (1) algorithm that uses a Gaussian representation of the QDO. A
(1% Pe) ~ OcL(0) P different approach for efficient CMD is to use force-match to

wherex; andp; are the position and momentum path centroid preqletermine an effective pairwise centroid force between
variables, respectively. As a result, the approximate time- Particles?
dependent QDO in CMD retains its initial form and therefore ~ The present paper includes a formal derivation of several
never has negative regions as does the exact time-dependerfpproximations in section Il and then compares these methods
QDO in some nonlinear systems. Although it is possible to for typical model systems in section lll. Section IV contains
propagate the QDO in an exact manner, for example, by concluding remarks.
Numerical Matrix Multiplication (NMM)?g this becomes es-
sentially impossible as the system goes beyond a few dimensiondl. Theory
because the computational effort scales exponentially. » o

The CMD approximation, on the other hand, has proven to _A. Exact Initial QDO and the CMD Approximation. The
be a powerful approach for obtaining certain quantum dynamical diagonal element of the exact initial QDO, eq 17 of ref 6, is
properties of condensed phase systems. Examples of this includgiven by
proton solvation and transpd¥t? liquid para-hydrogeAl—17
liguid nonsuperfluid Hé&;'® Vibrational Energy Relaxation A
(VER) rate constant®22 vibrational spectroscop?2* and (|0 o(x) IXT= ol
guantum activated rate constafts?’ CMD, of course, has its ¢
limitations. The method is intrinsically an approximation most 1 Zﬂhzﬁl. mP \F/2 d dxd(x. —
well-suited for condensed phase systems. Such systems usually p*) m p'_'Tlo Znhzﬁ) f Yo f X0 (X — Xo) %
exhibit fairly rapid regression to equilibrium when evolving from mp
an initially perturbed state and are therefore characterized by exp{ - Zh—z[(x —X)?+ e (X — X)) —

B (x) XD _
X
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where the position centroid distribution is given by

2
p) = [ ZL fx(o, - DX — g O =

Ve

F{ - Zh_ﬂ[(xl

f dx.... [dxpd(x, = %g) x
Xz)+ T+ O = %) —

BIV6) + V0g) + -+ Vel @)

and the centroid variable in discretized path integral notation is

written asxo = (xg + X2 + -+- + xp)/P. A one-dimensional no-

tation is used throughout this paper, which is readily generalized whereyo(f) =

to an arbitrary number of particles in three dimensions.
The exact time-dependent QDO is defined as

|Ht/h

So(txapy) = € M8 (x,,p)€ (4)
which is approximated by
Ot%P) ~ S XD Pc(1) ©)

Ka and Voth

If the potential is not harmonic, eq 11 can still be approximately
applied for a general potential. Below two different approxima-
tions will be given for the approximate widths of the Gaussian
QDO.

C. Choices for the Gaussian Width.1. Free Particle Width:
GCMD-0. The expression for the QDO in a free particle
potential (GQDO-0) is obtained in the limiting case of eq 11 as
Q—0,ie.

X| SG(xc,pg |xO=

«/%@exr{—ys(m(x'—jx x4 gpde — 0] (13

6mv(h2B). This GQDO-0 expression gives some
degree of quantum behavior for the system.)A$§3) — o« at
a very high temperature (or with a very heavy patrticle), the
GQDO becomes a delta function centered at the centroid
position, so the particle thus behaves in a classical manner.

2. Local Harmonic Approximation: GCMD-In the limit of
low temperature, the exact QDO becomes more position-
dependent, especially if the potential is anharmonic. The free-
particle (or a fixed width) approximation of the GQDO (GQDO-
0) therefore seems less realistic, and a more accurate approxi-

in the CMD formalism and thus leads to the practical imple- mation for the GQDO is required. Again, there is obviously no

mentation of centroid dynamics. As stated earlier, an important analytical expression for the exact QDO, so a centroid-position-
goal is to find more efficient methods for CMD simulations in  dependence of the GQDO can be inferred from a case in which
realistic condensed phase systems. Equation 5 defines time-an analytic expression for the QDO is known. One such case is

dependent CMD variables and their time correlation functions the harmonic potential.

(TCFs) as, respectively
B(t) = Tr{d(x:(t) (1) B

dxdp;
CEMD(t) = > ff

PXeP)AB()
with the CMD equations of motion for(t) andpc(t) given by

(6)

@)

dx(t)  p(t)
at o m (8)
dp(t)

dt - Fc(t) (9)

B. Gaussian Approximation. The QDO at higher temper-
ature can be shown to assume a Gaussian fdtris. therefore
natural to develop a Gaussian approximation which, in turn,
makes the CMD algorithm much more efficient. As the QDO
is normalized to unity, the Gaussian QDO (GQDO) at each
centroid position is defined by a single parameter, its width.
To determine the best expression for the width of the GQDO,
one looks to the exact expression for the QDO in the limit of
a harmonic potential. If a potential is harmonic, i.e., given by

2

Voo =T (10)
its QDO element is given by
18 (kPG = ) o] — 2% — 57 +

i MQX +Xx

=3~ TP )] ay
where

o = coth@hpS/2) — (2/Qh3) (12)

Because an analytical expression for the QDO is available
in the form of eq 11, one can introduce a local harmonic
approximation for a general potenti®{(x). In the local harmonic
approximation, a general potential in the neighborhord (
around each centroid point;, is approximated as a Taylor
expansion up to a quadratic term by

()

V) ~ V(X)) + = Zleo (X = %) + _m[QG(Xc)(X = x)]*

(14)

whereQg(xc), which replaces$? of eq 11 in the local harmonic
approximation, is defined as

o [18V)
Q= Qa) = 75 7 e, (15)
As a result, the GQDO becomes
. . 2
D= VG(::.ﬂ)eXp[_ yG(xzma X7
PR =) — el 5 - xc)] (16)
where
M%) A
VoXaB) = h(lG( -8)’ ag(XspB) =
Q (XA
Cow( G()2(0) ﬁ) B QG(>2<C)hﬁ 7

The value ofQg(x;) above becomes an imaginary number
when the local curvature of potential is negative, which can
limit the application of the Gaussian approximation for the QDO.
This problem can be avoided, however, by using the QDO of
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the free particle in the region that the curvature of potential which gives the time-dependent centroid variabbeg) and

goes negative, i.e. pc(t). The time-dependent velocity centroid variahlgf) then
m(x) gives the centroid velocity correlation functio@;, (t), as
MEeaXe)
Ye(XaB) = for V''(x) > 0 (18) 1 . .dxdp
hotexif) ety =3/ mcpc(xc,pavcvca) 27)
= :Tm for V(%) = 0 -
ﬁ N Z 20 CI(tO)UCI(tO + t) (28)
because o 51 tinax
o — 0 andag/Q; — h/6 asQ; — 0 whereZ = [ fdx.dpd/(27h) pc(Xe,pc) andN is number of sampled

centroid points. Equation 28 is a practical form to get eq 27,
D. Gaussian Centroid Force.Once a GQDO is given, the ~ and averaging OVG'Ina'x gives more rapid convergence.
Gaussian centroid forcEg, is required to propagate the centroid ~ The centroid velocity correlation functio;'(t) is used in
variables. This force is given by the following Fourier transform relationsKip

Fo(x) = Tr{dF] = de f(x)* %e*ye(xfxc)2 (19) Clilw) = [COﬂ( ) + 1]C (29)

to give an approximation to the quantum velocity correlation

For any force which is expanded in a polynomial form function, C™™t), which is one of the main goals in this

V( ) calculation and whose formal expression is given by
f(x) = =Y bX' (20) . )
z Cg:n(t) = Tr[e ﬁHA IHUﬁA IHtlh]/Tr[e—ﬁH] (30)
the Gaussian centroid force has the following form The tilde in eq 29 denotes the Fourier transform, and egs 28
and 29 are working equations for the calculationGgf{(t). In
F((n —k+1)/2) the same way, position autocorrelation functions can be obtained
F b i i i .
X)) = z e by replacingy with x in eq 27 through eq 30
k=0,1,2,.n (21) [ll. Examples
A. One-Dimensional Potentials.The models studied here
wherel is the gamma function an@) is n!/(K!(n — K)!) for are the same ones that have been studied with CMD and exact
evenn — Kk or zero for oddn — . _ methods beforé The weak anharmonic potential, eq 31 below,
Other forces, which cannot pe expanded in polynomial forms, represents many cases where anharmonicity of a system is not
are still expandable in Gaussian functions, i.e. large, while the double well potential, eq 32, is a case where
the quantum effects such as tunneling become important. The
00 = - aV(x) — Yo +b efcn(xfxn)l] 22) quartic potential, eq 33, is for the test of a large anharmonicity
z G n (i.e., there is no quadratic part to this potential). These three

potentials are given by

and their corresponding Gaussian centroid forces are given by 1
3

V(X) = x + 10x + 100)( (31)
Fo) = |a+b g T (23) 1, 1
Z "\ ye+ec, V(0 = =3¢ + 1—Ox4 (32)
The Gaussian centroid force in many-particle systems can be 1.4
defined in a similar way, but this involves additional assump- V) =X (33)
tions. This approach is discussed in the Appendix.
E. Propagation of Centroid Variables and Quantum Time 1. Centroid Distribution At the initial step of the simulation,

Correlation Functions. Once initial centroid pointsx¢,pc) are the centroid variableg,p. are sampled according to the centroid
sampled according to the centroid distribution function, eq 24, distribution function, eq 24. Sampling @t follows simply a

where the sampling dfc is a just Gaussian sampling Gaussian distribution, while. is sampled by Path Integral
. Molecular Dynamics (PIMD) with a discretization & = 10
porepo) = € PP (r ) (24) according to eq 3. Also Nésoover chain dynamié8and the

VV-3 algorithm developed by Jang and Vétiflength of chain
those centroid variables are propagated by eqgs 25 and 26 undet 4 and No$emasses= 2) were used for sampling of. The

the Gaussian centroid force of section I1.D such that initial PIMD ring-polymer was relaxed 1,000,000 steps with a
time step of 0.01, and then the centroid positions of every 10,000
dxc(t) Pc(t) (25) steps were collected until the total numbexgihitial conditions
Cdt m reached 10,000.
2. Quantum Paosition Correlation Functio@nce the time-
dp (t) = F (1) (26) dependent position centroid variable is obtained, it gives the
dt ¢ centroid position correlation functiof, (t), through eqs 27
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Figure 1. Position time correlation functions for the weak anharmonic
of eq 31, at two different temperatures of (8)= 1 and (B)g = 8:
exact (thick solid), CMD (dotted), GCMD-0 (open circle), GCMD-I
(thin solid), and CCD (dashed).

20

30 but now withx in the place ofv. In Figures 13, different
position correlation functions are compared: exact, CMD,
GCMD-0, GCMD-I, and Classical Centroid Dynamics (CCD),
for each of the three potentials in eqs-33. The CCD method

is one in which the centroids are propagated with the classical
force, but their initial conditions are sampled from the exact
quantum centroid distribution. Exact and CMD data are taken
from the paper by Jang and Voth.

Weak Anharmonic Potential [Eq 31]. When the temperature
is such thapp = 1, all GCMD, CCD, and CMD results give a
good approximation for position correlation functions to the
exact one in Figure 1. Whefi = 8, all approximate methods
deviate from the exact one, although most of the features of
the exact result are still captured. CCD and GCMD-0 are
somewhat less accurate than GCMD-| or CMD, because the
former are not capable of describing the position-dependence
of the QDO, which becomes more important as the temperature
is lowered.

Double Well Potential [Eq 32]. The double well potential is
far from the harmonic case, even fbr= 1, so the results of
any approximate method in Figure 2 deviate significantly from

Ka and Voth

Time
Figure 2. Position time correlation functions for the double well of
eq 32, at two different temperatures of (A 1 and (B)g = 8: exact
(thick solid), CMD (dotted), GCMD-0 (open circle), GCMD-I (thin
solid), and CCD (dashed).
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Figure 3. Position time correlation functions for the quartic of eq 33,
at two different temperatures of ()= 1 and (B)S = 8: exact (thick
solid), CMD (dotted), GCMD-0 (open circle), GCMD-I (thin solid),
and CCD (dashed).

20

the exact correlation function. This behavior arises because the

approximate time-dependent position centroid variakié),
does not follow the exact centroid trajectory after 3 in Figure
3 of ref 32. The CMD assumption in section II.A does not reflect
the real behavior of the time-dependent QDO. In reality, the
QDO as a function of time can be different even at the same
centroid position and momentum, i.e.
S(tixaPd) = Ot %P for t= t (34)
which is assumed to be an equality in the CMD formalism. This
real behavior of the QDO is shown in Figure 1 in the paper by
Jang and Vothand the semiclassical centroid dynamics work
of Ka and Voth3?
In Figure 2 forg = 1, all GCMD and CMD results are
satisfactory up to ~ 3, while the CCD approach shows a larger
and earlier deviation from the exact result. When compared to

result deviates at early times. The GCMD-I result is better than
both CCD and GCMD-0 because it includes a position-sensitive
QDO description.

Quartic Potential [Eq 33]. Whefi = 1 in Figure 3 for the
purely quartic potential, all approximate CMD methods give
reasonable correlation functions. The GCMD correlation func-
tions follow the CMD correlation function very well up to~
5. When the temperature is loweredfo= 8, however, only
the CMD correlation function exhibits good agreement with the
exact correlation function in Figure 3. All other approximate
methods fail to follow the exact or CMD correlation beyond
t =1, although the GCMD approximations generally have just
a phase shift from the CMD results. The CCD result is the worst
case in that its dephasing is prominent in comparison to any
other method.

Overall these typical 1-dimensional potential examples con-

CMD, both GCMD results give a reasonable agreement over firm that CMD works better when anharmonicity is weak or
the whole range of time. When the temperature is lowered to the temperature is high or low but not intermediate. Also they
= 8, the GCMD results are in worse agreement with the CMD reveal that GCMD is an efficient and satisfactory approximation
correlation function and the exact result in comparison to the to CMD in the time range where CMD is consistent with the
B =1 case. The CCD result deviates seriously, and the GCMD-0 exact correlation function except for the purely quartic potential
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TABLE 1: Frequencies and Coupling Constants for the

Harmonic Bath in Section Il.B2 14 141
clm 0.7} 0.7}
Wi weak coupling strong coupling 0.0 0.0 W
0.57(0.4) 0.063 0.21
1.13(0.8) 0.102 0.34 0.7 0.7}
1.7(1.2) 0.123 0.41 (A=t (B)p=
2.26(1.6) 0.132 0.44 ::,;2-1-40 m 2674 m 20
3.11(2.2) 0.132 0.44 O
3.68(2.6) 0.129 0.43
4.24(3.0) 0.120 0.40 14 14}
5.09(3.6) 0.108 0.36
5.66(4.0) 0.099 0.33 0.7y o7y
6.22(4.4) 0.087 0.29 00 0_0_\ ~ N\
2 Frequencies in parentheses were used for weak anharmonic or
quartic potential cases. All units are in atomic units. 0.7p 0.7p
(C) B=1 (D)p=8
at a temperature g8 = 8. One further expects that (G)CMD 14 10 20" 10 20
will be better in larger systems where dissipation plays an
important role. So (G)CMD is tested in the next section for the Time

above systems coupled to a dissipative harmonic bath. GCMD Figyre 4. Position time correlation functions for the weak anharmonic
is also applied to many-particle systems in section II.C. potential weakly (A and B) or strongly (C and D) coupled to 10
Unfortunately, exact calculations for these cases are not availableharmonic bath modes at two different temperatureg of 1 (A and
for comparison, so the focus is only on how GCMD works in C) and = 8 (B and D): CMD (dotted), GCMD-0 (open circle),
comparison to CMD. GCMD-I (thin solid), and CCD (dashed).
B. 1D System+ Harmonic Baths. Sun and Mille#® have
added 10 harmonic (bath) degrees of freedom to a 1-D system
potential in order to investigate the system-bath problem. The
same coupling between system and bath modes is used in this
work. Specific values of frequenciegwi}, and coupling
constants{c}, are listed in Table 1. Two different sets of
coupling constants were employed in order to explore how
quantum dissipation affects the (G)CMD correlation func- =
tions: weak coupling{0.063, ..., 0.08% and strong coupling,
{0.21, ..., 0.29. ©
1. Single Well Potential with Weak AnharmonicityGauss-
ian Bath.In this case the potential is given by

0 10 20 30 40 0 10 20 30 40

1 1 1 10 mw.z C 2
Vi{a)) =8+ + X+ Y -
2 10 100 5 2 m(uiz

(35)

0 10 20 30 40 0 10 20 30 40
When the coupling is weak (Figure 4A,B), the correlation .

function of system has almost the same frequency, but the Time

OSCI"atIOﬂ |S Somewhat damped |n Comparlson to the case Of F|gure 5. POSItIOh t|me COI’re|ati0n funCtiOhS fOI’ the d0Ub|e We”

; ; ; potential weakly (A and B) or strongly (C and D) coupled to 10
no coupling. As the coupling becomes strong (Figure 4C,D), harmonic bath modes at two different temperatureg ef 1 (A and

the correlation function of the system is modified significantly. C) and = 8 (B and D): CMD (dotted), GCMD-O (open circle),

Both the frequency and amplitude are changed, and dephasingscmp-| (thin solid), and CCD (dashed).

becomes much more dominant. In both cases, all CMD

approximations are in good agreement with one another. 3. Quartic PotentiaH- Gaussian BathThe potential in this
2. Double Well Potential- Gaussian BathThe potential in case is given by

this case is given by )

10 mao; C 2

1 i
10 ma;’ ¢ |2 Vedah =X+ 5 ——a-—x @D

1 1
Vix{g}) = — EXZ + E)X4 + I LS (36) = mo;

= w;

e From a comparison of Figures 3 and 6, whgn= 1 the
It is shown from comparison of Figures 2 and 5 that the correlation functions from (G)CMD show more structure at later
(G)CMD correlation function has more structure when the times if bath modes are coupled to the system dynamics. It
system is coupled to a bath. Figure 5A,C shows that regardlessappears that somehow the coupling to the bath may serve to
of the strength of the coupling, f = 1 all approximations reduce the anomalous dephasing of the CMD resyft at 1
give a reasonable result. Whar= 8 and the coupling is weak,  for this potential as seen in Figure 3. Both GCMD approxima-
CCD gives poor agreement with the CMD result, while GCMD tions seem to follow the CMD correlation function reasonably
captures more of the CMD behavior, with GCMD-I being the well, while CCD remains a poor approximation at the low
best. temperature{ = 8).
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oa os[ (B)p=8 6. ' ‘ ' A
4 ]
0.4} 0.4, 2
0.0} ool 0
-2
-0.41 -0.4 o
2°k (B)
0.8} 0.8} <y ]
= s o
=% 0 10 20 0 10 20 z,
O S
o0
0.8 (C) p=1 3
04t of (C)]
0.0} 1r
-0.4} of
08l bo 0.2 04 fmo(ps) 06 0.8 1.0
0 10 20 0 10 20 Figure 7. Velocity correlation functions of (A) para-hydrogenTat
14 K, (B) para-hydrogen at = 25 K, and (C) ortho-deuterium at=
Time 20.7 K. The three curves are CMD (thick solid line), GCMD-0 (dotted
Figure 6. Position time correlation functions for the quartic potential line), and GCMD-I (dashed line).
weakly (A and B) or strongly (C and D) coupled to 10 harmonic bath . i o —_
modes at two different temperatures/bf 1 (A and C) angs = 8 (B EQPaEEy%ro%g; Ig;ff;ss ﬁn( EZ?;Ss)tants for Liquid
and D): CMD (dotted), GCMD-0 (open circle), GCMD-I (thin solid),
and CCD (dashed). method Green-Kubo density (A
TABLE 2: Parameters for the Silvera—Goldman Potential gg,ag%f 17) %iﬁ 88? 88138
Function for Ground State H,—H»2 GOMD-I 1'541 0'07 0'0190
potential a b c m Ce Cs Co Cio experiment (ref 37) 1.6
Vh,-1, 1.713 1.5671 0.00993 6.50 12.14 215.2 143.1 4813.9 TABLE 4: Self-Diffusion Constants for Liquid
aThe units for each quantity are atomic units. Taken from Table 1 Para-Hydrogen at 14 K (A?/ps)
of ref 36. method Green-Kubo density (A
. . e MD (ref 17 . . .02
C. Many-Particle Systems.1. Gaussian Fitting of the gCMg-% ) gggi 8'82 8'8238
Silvera—Goldman Potential for Para-H Hydrogen molecules GCMD-I 0.32+ 0.06 0.0230
can be approximated to be in their rotational ground state. This  experiment (ref 37) 0.4 0.0230

approximation is justified at temperatures below 85 K, the
rotational temperature of hydrogen molectii@he interaction
between such spherical hydrogen “molecules”
the Silvera-Goldman potential! given by

) ! deuterium afT = 20.7 K, the second set of 100 4.2 ps runs
is described by \yere enough, but para-hydrogenTat= 14 K required longer
equilibration runs. This is because relaxation from initial lattice
structure occurs more slowly at a lower temperature.

Vedr) = expla — br — cr’] — 35 + &3 - % + ﬁ) f(r) 3. Velocity Correlation Function and Self-Diffusion Con-
oot 0 0 stants.Velocity autocorrelation functions,,(t) = We(O)Ve(t) (1.,
(38) were calculated from simulation runs for 3 cases and appear in
Figure 7 (A=C). In all three figures, there are some relatively
where small differences between exact CMD and GCMED( or —1).

Of the three systems, para-hydrogenTat= 14 K is most
guantum in nature, and therefore one can see larger differences
between GCMD-0 and GCMD-I from Figure 7A. Differences
between methods become smaller as the temperature goes higher

The parameters of eqs 38 and 39 are found in Table 2. In (Figure 7B) or the mass gets heavier (Figure 7C).
Appendix A, f|tt|ng of the Silvera-Goldman forces by Gaussian The self-diffusion constantf), were calculated through the
functions is presented, which were used in our GCMD simula- Green-Kubo formulg'* where a numerical integration is
tions. performed over Figure 7(AC) such that

2. GCMD SimulationsThe equilibrium state of liquid para- L
hydrogen at 25 K (or 14 K) was achieved through relaxation of 1
aﬁ ini%al fcc stru(cture V\Zhere 500 moleculesg were packed b= 3»/<‘J dtNC(O)VC(t)gc (40)
periodically within an equilateral cubic simulation box. After
an initial 10 ps relaxation, 300 4.2 ps runs were carried out The values for the diffusion constants are listed in Table$3
with a time step ofdt = 1 fs, each starting from the final  for the three systems studied. Para-hydrogén-at25 K (Table
configuration of the last run. Whenever the next run started, 3) is well described by both forms of GCMD, while at= 14
velocities of the particles were resampled according to eq 24 toK (Table 4), the two GCMD approximations give different
ensure canonical sampling. Data were collected from the final diffusion constants. Of these choices, GCMD-I seems most
100 runs, and no data were collected for the first 200 fs of each reasonable as might be expected since it employs a more
run. For sampling of para-hydrogen &at= 25 K and ortho- physically accurate local quadratic width than the free particle

exp[—(1.28¢,/r) — 1], r < 1.2&,

fo(r) = {1,r > 128, (39)
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TABLE 5: Self-Diffusion Constants for Liquid
Ortho-Deuterium at 20.7 K (AZ/ps) 0.00000 o
method Green-Kubo density (B / (A)
-0.00001 | s
CMD (ref 17) 0.40+ 0.06 0.0254
GCMD-0 0.38+ 0.06 0.0254 -0.000021
GCMD-| 0.41+ 0.06 0.0254 : Silvera-Goldman
experiment (ref 38) 0.36 0.0254 — 3Gfit

-0.00003 —O0— 6G fit
- - - 9G fit

...... 10G fit

—~

width of GCMD-0. This result also implies that a positon =2 0004
sensitivity of the QDO at a lower temperature is more important. ~

For o-deuterium afl = 20.7 K (Table 5), there is a less 8 4 5 6 7 8 9
difference between the GCMD results, which may be ascribed & 0.000001
to a relatively heavy mass of deuterium in comparison to that LL
of hydrogen, making it more classical. Overall GCMD-I gives (B)
very satisfactory diffusion constants for all three cases, which L
is an encouraging result from this work. | __.---"77

0.000000 p————r==
IV. Concluding Remarks Silvera-Goldman
- - - 9G it
In this paper, a Gaussian-approximation for CMD (GCMD) | | e 10G fit
has been introduced in order to greatly increase the speed and -0.000001 . ) .
efficiency of CMD calculations. GCMD is clearly a good choice ) 16 20 24 28 32

when CMD is expected to give a result consistent with the exact X ( A)
one, for example, condensed phgse systems when diSSipatiorlliigure 8. Silvera—Goldman force is fitted to Gaussian function sets.
from one. degree. of freedom O.f interest t.o. Other degrees of 3-, 6-, 9-, or 10-Gaussians fitted forces are compared. For short-range
freedom is prominent. GCMD is very efficient in terms of fiing (A) 9G seems best, whereas a 10G-fitted force describes the
computational effort, e.g., it requires1/100th the CPU time  best of long-range fitting (B). In the simulations, it is believed that

compared to full CMD, and is only 23 times slower than both the equilibrium distance and the long-range part are more important
conventional classical MD. This increase in speed is possible than any other range, so the 10G-fitted force was chosen for this work.
because GCMD replaces the most time-consuming part of CMD,
i.e., the calculation of the average centroid force, with an
analytical integration. This increase in efficiency due to the

vent this singularity problem. The Silver&oldman force is
given from eq 38 by

analytical Gaussian averaging is in many ways similar to the d ’

use of Gaussian basis sets in electronic structure calculationsFsdf) = ~ g, Vsdr) = (b + 2cr) expla — br — cr] —

If the sige of the sygtem is large, or Whe_n i.t.is coupled to ar_10ther 6C, 8C; 9C, 10C,q

expensive calculation such as an ab initio (Al) calculatibn, —+t—-——t+t—= f(r) —

GCMD may be a good choice or at least a good starting point r r r r

for a more expensive full CMD calculation. As a realistic G G G Cp ¢
example, GCMD was applied in the present work to liquid para- F + F o F + ﬁ o) (A1)

hydrogen/ortho-deuterium where full CMD results were avail-

able for comparison. This example reveals that GCMD can be where

a quite good approximate method for systems at low temperature

where quantum effects play a significant role. The computational = (2.5&”/r2)((1.28fm/r) — 1f(r),r <1.2
efficiency of GCMD when utilized in AIMD remains to be fo(r) = 0,r>129

determined because the analytical force and its derivative do "

not exist in AIMD and must be also computed numerically.  This force can be written as with the superposition N
Gaussians as follows.

Tn (a2)

Acknowledgment. This research was supported by a grant Neg
from the National Science Foundation (CHE-0317132). We Fedl) ~ [Ag 2w 4 g (A3)
thank Dr. Seogjoo Jang for many insightful discussions and =

Tyler Hone for providing his CMD results on diffusion constants
and correlation functions for p4and o-B. An allocation of A different range of the fitting potential will require a different
computer time from the Center for High Performance Comput- Number of Gaussians. This fitting range should be large enough

ing at the University of Utah is gratefully acknowledged. to cover any significant distributions which are shown in Figure
1S of the Supporting Information. Since the tail of GQDO-0
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of the inner bound of the fitting range. As such, an appropriate
A. Fitting the Silvera—Goldman Force to Gaussian Func- inner bound of the fitted force should be around 2.1 A. Figure

tions. When GCMD is adopted for liquid para-hydrogen, the 8 shows the 9G-fitting (Supporting Information) has the best
Silvera—Goldman potential of eq 38 or its derivative (force) fit around the minimum force, while Figure 8B suggests 10G-
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simulation, the 10G-fitting within the range [2.1 A, 52.9 A]
was chosen for this work. This range [2.1 A, 52.9 A] guarantees
inclusion of most parts of the GQDO over the whole distribution,
so that the Gaussian centroid force integrated within this range
will have a small error. Also this range sufficiently covers the
size of the simulation box (27.9 A) or the region of the minimum
image convention. The parameters for the fitted force with 10
Gaussians is given in the Supporting Information.

B. Gaussian Centroid Force.Once any type of GCMD in
section 11.C is employed, the Gaussian centroid force of the
Silvera—Goldman force has the following form

Fo(rd) = Tr{dF] = fdrFedr)- %e‘m“‘fc)z (B1)

Ng
FG(rc) = Z[An@e_z%(rc—rn)z/wnz + Bn] (BZ)
=

YG
ve T 2/Wn2

On (B3)

and the value of s depends on the type of GCMD from section
I.C.

If a system consists dfl, hydrogen molecules, each pair of
hydrogen molecules experiences this Gaussian centroid force
and there are a total dfu,(Nn, — 1)/2 calculations of the
Gaussian centroid force required for each propagation of the

whole system. Appendix C describes the Gaussian centroid force

in a many-particle system. With that in mind, each hydrogen

molecule propagates under the force that is the vector sum of

Nu, — 1 Gaussian centroid forces from other hydrogen
molecules. For a better notation for pairwise interacting systems,
the centroid positiont. in eq B2, is replaced by the distance
between théth hydrogen and thgh hydrogen molecules;;.
Therefore, the total Gaussian centroid force exerted oritthe
hydrogen is expressed as

Ni,—1

Fo(r) = JZ fijZ A,

e_z'VG(rij_rn)Z/an + Bn
Yot 2/Wn2
(B4)

wherer; is a position of theth hydrogen andj is a unit vector
pointing from thejth hydrogen to theth hydrogen, i.efj
(ri — r/rj. It should be noted that cross-correlations have been
neglected in defining the GCMD width and Gaussian-averaged
centroid force in the above equation (see below).

C. Gaussian Centroid Force in Many-Particle System1.
Pairwise Additvity Assumption of the Gaussian Centroid Force.
For an N-body system, the Gaussian centroid force oritthe
particle is, in principle, defined as

3

aVi(r)) im
Fiolric) = Zfim fdrim - ine

efyim.G(
JT

Tim—Tim,G)?

ar;

im

(C1)

wherer; g andri,, are the Gaussian centroid position and the
m-direction coordinate (normally, y, or 2) of theith particle.
The yimg in eq C1 is defined in the same way as in eqs 13 or
16 except that this requires a calculation of the quartfy,(r;)/
arim? for Vi(r) = 35 Vy(ry) where Vj is a pair potential
between particle and particlej. Doing this in many-particle

Ka and Voth

cle

clv

crf

Figure 9. Hydrogen molecules in a body-centered cubic. Thick arrows
show directions along which distributions are calculated in Figure 1S
of the Supporting Information.

systems is actually very cumbersome so a more practical
‘approach is chosen below. It is helpful, however, to explore
aspects of the above approach before delving into the detalils.
For example, each particle in a many-body system is located
either at the boundary or inside a cluster as shown in Figure 9.
Figure 9 shows spatial arrangements of hydrogen molecules
which are used in the calculations of distribution functions in
Figure 1S. The potentials exerted on the inside particles along
each direction have functional forms as given in the Supporting
Information. Note that these potentials and forces are expressed
along a single directiorf,(e, or v) rather than in 3-dimensional
coordinates. Classical distribution functiofs=€ 1), which are
just Boltzman distributions, exp{sV(r)], are also shown in the
same Figure 1S of the Supporting Information for comparison.
Centroid distributions come from PIMD using an isomorphic
ring polymer3® A quantum particle described by a ring polymer
of P = 10 beads distributes over a little narrower range in
comparison to a classical particle. Of course any particle will
be inside a cluster if one uses periodic boundary conditions in
simulations. From Figure 1S, one can see that both the
distribution and QDO are not much different along any direction
(f, e, or v) once a particle is surrounded by other particles, so
one can also determine a proper inner bound for the fitted force.
A more practical approach is to calculate a direct Gaussian
centroid force for each pair interaction and then do the vector
sum for each particle, such that

Vi) (Vi

e*)/u.e(frl’u.e)z
T

or

N—-1
Figlrie) = ) fy| Jdry{—
&\lic J; lf j ij

(C2)

This is the “pairwise additivity assumption” of GCMD. In the
viewpoint of classical dynamics, it is natural to think of the
total force on a particle as the same as a vector sum of forces
from all pairs. It is, however, an additional assumption in the
GCMD formalism to consider a vector sum of Gaussian forces
of the pair interactions, eq C2, instead of eq C1. This assumption
not only makes the method more practical but also results in a
quite good description which is confirmed in section lIl.
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2. Gaussian Centroid Force for Each Pair-Interactidnce
the pairwise additivity assumption described in the previous

section is accepted, another issue still remains because a pair-

J. Phys. Chem. A, Vol. 109, No. 50, 20061617

(8) D. Thirumalai, E. J. Bruskin, B. J. Bernd, Chem. Phys1983
79, 5063.
(9) Schmitt, U. W.; Voth, G. AJ. Chem. Phys1999 111, 9361.
(10) Kim, J.; Schmitt, U. W.; Gruetzmacher, J. A.; Voth, G. A.; Scherer,

interaction generally has a singular point at zero distance andN. F. J. Chem. Phys2002 116, 737—746.

its Gaussian average, eq C3, becomes divergent, i.e.

Ficllijc) = Tr[sij,GIEij] =

NV i 0 o y2
- NS —yie(ri—rie)
fdr”( o, \ e (C3)

There are two possible ways to circumvent this problem. One

(11) Pavese, M.; Voth, G. AChem. Phys. Lettl996 249, 231.

(12) Kinugawa, K.Chem. Phys. Lettl998 292, 454.

(13) Bermejo, F. J.; Kinugawa, K.; Cabrillo, C.; Bennington, S. M.; Fak,
B.; Fernandez-Diaz, M. T.; Verkerk, P.; Dawidowski, J.; Fernandez-Perea,
R. Phys. Re. Lett 200Q 84, 5359.

(14) Calhoun, A.; Pavese, M.; Voth, G. &hem. Phys. Letl.996 262
415.

(15) Yonetani, Y.; Kinugawa, KJ. Chem. Phys2003 119 9651.

(16) Saito, H.; Nagao, H.; Nishikawa, K.; Kinugawa, X.Chem. Phys.
2003 119 953.

(17) Hone, T. D.; Voth, G. AJ. Chem. Phys2004 121, 6412.

is using a tapered force at the singular point, cutting the Gaussian (18) Miura, S.; Okazaki, S.; Kinugawa, K. Chem. Phys1999 110,

tail at the proper range, and then integrating eq C3 numerically. 4523.

The other one is fitting the pair-interaction within the relevant
range into a superposition of several Gaussian functions.

(19) Poulsen, J.; Rossky, P.Jl.Chem. Phys2001, 115 8014.
(20) Poulsen, J.; Rossky, P.Jl.Chem. Phys2001, 115 8024.
(21) Poulsen, J.; Keiding, S. R.; Rossky, PChem. Phys. Let2001,

As stated in the main text, the second method is usually 336 488.

superior in computational efficiency to the first method mainly
by virtue of the analytic integration in eq C3 for a Gaussian-
fitted force. In the case that fitting the pair-interaction into a
superposition of Gaussians is difficult, the first method could

be a more effective choice. The current work on para-hydrogen/

(22) shi, Q.; Geva, EJ. Chem. Phys2003 119 9030.

(23) Schenter, G. K.; Garrett, B. C.; Voth, G. A.Chem. Phys200Q
113 5171.

(24) Marx, D.; Tuckerman, M. E.; Martyna, G.Gomput. Phys. Comm.
1999 118 166.

(25) Jang, S.; Voth, G. AJ. Chem. Phys200Q 112, 8747.

(26) Geva, E.; Shi, Q.; Voth, G. Al. Chem. Phys2001, 115 9209.

ortho-deuterium uses the second method to get a Gaussian (27) Schenter, G. K.; Messina, M.; Garrett, B..CChem. Phys1993

centroid force for the pair-interaction, the details of which are
given in Appendices A and B.

Supporting Information Available: Gaussian functions set
used in fitting Silvera-Goldman force, the potential exerted
on an inside particle of a cluster, and its corresponding
distribution functions and QDOs. This material is available free
of charge via the Internet at http://pubs.acs.org.
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